Blog Jagoan Hosting | Tutorial Website & Web Hosting Indonesia

Prediktif Analytics dalam Data Kenapa Penting? Ini Alasannya!

Prediktif Analitik adalah salah satu cabang dari analitik lanjutan yang digunakan untuk membuat prediksi tentang suatu kejadian masa depan. Jenis analitik ini mempelajari mengenai hubungan–hubungan antar variabel dan kemudian membuat suatu model statistik yang dapat memprediksi suatu nilai dari kejadian baru dan kejadian masa depan. 

Misalnya suatu perusahaan provider hosting indonesia ingin mengetahui pendapatan perusahaan 10 tahun ke depan. Prediktif analitik melibatkan banyak metode salah satnnya dari data mining, machine learning, statistics, neural networks, dan artificial intellegence untuk membuat prediksi mengenai masa depan. 

Penggunaan prediktif analitik

Beberapa organisasi dan perusahaan telah menggunakan prediktif analitik untuk membantu meningkatkan penjualan mereka dan menganalisis kemampuan kompetitor. Berikut merupakan contoh penggunaan prediktif analitik

1. Mendeteksi kesalahan/kecurangan

Pendeteksian akan potensi suatu kesalahan dalam suatu sistem perlu dilakukan untuk mencegah kesalahan tersebut terjadi. Melalui metode prediktif analitik, suatu perusahaan atau organisasi dapat memprediksi kapan suatu kesalahan/kerusakan akan terjadi.

Perusahaan juga bisa mempelajari perilaku-perilaku sebagai indikator bahwa kesalahan/kerusakan tersebut sangat potensial terjadi. Misalnya suatu perusahaan produksi melakukan prediksi mengenai pada produksi ke berapa kemungkinan besar akan menghasilkan produk yang cacat/rusak.

Contoh penerapan lainnya yaitu untuk melakukan pencegahan terjadinya suatu kecurangan ataupun tindakan kriminal dengan cara memprediksi suatu perilaku-perilaku (variabel-variabel) yang mengindikasikan ancaman.

2. Mengoptimalkan marketing campaign

Model prediktif membantu pebisnis untuk menarik dan mempertahankan pelanggan mereka terutama yang paling menguntungkan bagi mereka. Menggunakan metode prediktif, suatu perusahaan dapat memprediksi calon pelanggan yang cocok dengan produk yang mereka tawarkan dan memprediksi apa yang sedang dibutuhkan pelanggan saat ini. Sehingga, perusahaan dapat mengoptimalkan marketing campaign yang akan mereka jalankan.

3. Riset operasi

Banyak perusahaan menggunakan prediktif analitik sebagai perencanaan dalam persediaan bahan baku, kapan persediaan akan habis, kapan seharusnya pesan dll.

Jenis Prediktif Model

Menurut SAS, terdapat dua jenis prediktif model yaitu model klasifikasi dan model regresi. Model klasifikasi bertujuan untuk memprediksi nilai suatu individu (subjek). Contohnya suatu perusahaan mengklasifikasikan apakah calon pelanggan layak diberikan kartu kredit atau tidak.

Umumnya, model klasifikasi dalam bentuk 0 (tidak layak diberikan kartu kredit) dan 1 (layak diberikan kartu kredit). Beberapa metode yang dapat digunakan dalam membentuk model klasifikasi yaitu analisis regresi logistik, analisis diskriminan, analisis cluster, decision tree dan random forest.

Sedangkan model regresi bertujuan untuk memprediksi atau meramalkan suatu nilai. Contohnya adalah meramalkan banyaknya data pengguna website suatu perusahaan 5 bulan mendatang. Beberapa metode yang digunakan untuk membentuk model regresi adalah analisis regresi, analisis deret waktu (ARIMA, Exponential Smoothing, ARCH – GARCH dan lainnya).

Tiga metode prediktif yang paling sering digunakan yaitu

1. Decision Trees

Decision tress termasuk dalam model klasifikasi yang membagi data menjadi himpunan bagian berdasarkan kategori variabel masukan. Model ini dapat membantu kita bagaimana seseorang mengambil keputusan. Decision trees membagi data menjadi kelompok yang paling berbeda.

2. Analisis regresi 

Analisis regresi merupakan salah satu metode analisis yang paling sering digunakan (populer) dalam statistika. Analisis regresi merupakan suatu bentuk hubungan antara variabel bebas dengan variabel tidak bebas. Hubungan variabel tersebut bisa dalam bentuk linier, logaritma, aditif maupun multiplikatif.

Analisis regresi dapat digunakan untuk tujuan prediksi yaitu memperkirakan nilai suatu variabel (dikenal dengan variabel tidak bebas) berdasarkan nilai variabel lainnya (disebut variabel bebas).

3. Jaringan syaraf tiruan (Neural Network)

Metode Jaringan syaraf tiruan adalah salah satu metode yang sangat populer dan canggih karena mampu memodelkan hubungan yang sangat kompleks. Metode tersebut juga terkenal kuat dan flexibel. Kekuatan metode tersebut terlihat dari kemampuannya untuk menangani hubungan non linier.

Teknik tersebut sering digunakan ketika model matematika/statistika tidak mampu lagi menggambarkan hubungan antara input dan output. Dalam metode ini, prediksi lebih penting daripada penjelasan model. Jaringan syaraf tiruan awalnya dikembangkan untuk meniru jaringan syaraf manusia.

Hanya Dengan 12.000/bln, Website Kamu Bisa 5x Lebih Cepat!!

Mau Dong!

+ +